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Scaling approach of the convective drying of a porous medium
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Abstract. We propose a simplified, theoretical approach of the evolution of liquid distribution during the
convective drying of a granular packing. In the absence of gravity effects three regimes are distinguished
according to the relative importance of surface evaporation, capillarity or evaporation from the interior
of the sample. The evolution of the drying rate as a function of the saturation can be inferred from the
characteristic velocities associated to each of these effects. We also carried out drying experiments of bead
packings saturated with ethanol, at four different velocities of the boundary convection current, and with
bead size ranging from 4.5 to 100 µm. The drying curves exhibit different regimes with a scaling as a
function of particle radius and current velocity as predicted by the theory.

PACS. 68.10.-m Fluid surfaces and fluid fluid interfaces – 81.05.Rm Porous materials; granular materials
– 92.40.Je Evaporation

1 Introduction

Porous materials in contact with the atmosphere such as
rocks, soils, bricks, concrete, cement, wood or roads are
constantly submitted to imbibition-drying cycles which
critically influence their properties and their life. For these
materials the slow drying at ambient temperature un-
der the action of a convection current along a free sur-
face is a very common process. The drying of porous me-
dia, which is also of great interest in industrial processes,
has been extensively modelled within the framework of
thermodynamics [1]. In that case it is necessary to take
into account temperature and pressure gradients within
the material [2,3]. From current models it is nevertheless
hard to distinguish the dominant mechanisms in process.
Here we propose a straightforward approach of the dry-
ing of a model porous medium (a granular packing) based
on global, though approximate, physical arguments (pore
structure and characteristic velocities) which make it pos-
sible to simply predict the features of drying over a wide
range of conditions.

We consider the drying, at ambient temperature (T ),
of a liquid initially saturating a random packing of rigid
spheres (of characteristic radius R) in a cylindrical ves-
sel of cross-section S and height H0, as a result of gas
convection along its upper, horizontal, free surface (see
Fig. 1). The other boundaries of the bead pack are in con-
tact with approximately isothermal, rigid, impermeable,
surfaces. The temperature of the convected gas remains
close to the ambient temperature so that temperature gra-
dients remain weak during the experiment. Adsorption of
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Fig. 1. Principle of the convective drying of a porous medium.

liquid on particle surface is neglected and the solid par-
ticles are non-hygroscopic. Under these conditions drying
fundamentally consists in replacing liquid by air within
a fixed solid volume with possible liquid counterflows at
slow evaporation rates [4]. We shall only deal with suffi-
ciently slow processes that can be considered at each time
as in pseudo steady-state regime.

In practice the drying curve, i.e. the drying rate (see
Sect. 2) as a function of liquid content, of such a mate-
rial has been separated into three periods to which phys-
ical processes have been tentatively associated [3,5–9]: 1)
a period of constant-rate (CR) of drying (also called fu-
nicular regime because the liquid is supposed to be mo-
bile), generally associated with the existence of a con-
tinuous liquid network throughout the sample; 2) a first
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decreasing-rate period (FDR) during which the liquid
close to the surface clearly breaks into discontinuous wet
patches and the surface temperature slightly increases;
3) a second decreasing-rate (SDR) period, generally as-
sociated with a discontinuous liquid network within the
porous medium (pendular regime) and the development
of a dry receding front from the free surface of the sam-
ple. The rate of drying in the three different periods has
mainly been modelled numerically from a set of equa-
tions taking into account vapour and liquid transfers along
with boundary conditions. In general the predictions of
these models, which often rely on the use of more or
less adjustable parameters (vapour diffusion coefficient
and liquid permeability) and some simplifying hypotheses
concerning the physical processes, are in reasonable agree-
ment with experimental results essentially during the first
stages of drying. However the possibility of making ac-
curate predictions appears doubtful not only because of
the limitations of the theory but also because of the inac-
curacies of experimental results [10,11]. In particular the
critical time at which the FDR period starts has gener-
ally been correctly predicted by these models but not the
drying rate beyond this time [6].

Physical approaches of drying intended to identify dry-
ing regimes and to determine drying rate as a function of
material characteristics surprisingly lack. In this domain
the deepest insight has been provided by Van Brakel [12]
on the basis of an extensive review of existing experimen-
tal results and physical analyses. In particular this author
showed that: the drying rate during the (CR) period is
in fact not exactly constant; it is highly doubtful that a
liquid film is always present at the sample surface during
this period; a (CR) period does not occur if the capillary
liquid transport cannot sustain the rate of evaporation.

Apart from these basic, physical considerations, some
authors [4,13–15] studied the characteristics of dry fronts
propagating in porous media with the help of invasion per-
colation principles. The fundamental assumption of these
works is that as drying proceeds a dry region progressively
extends from the free surface towards the interior of the
porous medium. Under these conditions this is a situation
of slow drainage for which capillary effects play a major
role so that the air penetration through the sample can
basically be described by invasion percolation concepts.
However the field of application of these models remains
questionable since most measurements of water content
distribution within slowly drying porous media show that
a dry region develops only during the ultimate stage of
drying [12,16]. In the absence of gravity effects only one
experimental work [4] seems to support the assumption
of a dry front propagating from sample free surface. It
relies on lateral observations of an opaque region pro-
gressing through a refractive-index-matched water-silica
spheres mixture. We emphasize that this opacity simply
proves the existence of some water-air interfaces but can-
not be associated to an air content. Finally, in agreement
with our own lateral observations of drying of water-bead
packings, we believe that Shaw’s observations correspond
to the preliminary stages of drying when the water-air

interface initially penetrates each REV of the medium,
the saturation remaining close to its maximum. In the fol-
lowing we shall neglect this period which is in general a
short transient regime.

The present work relies on the idea that dominant
mechanisms can be associated to the different drying
regimes from which drying rate expressions in each regime
can be deduced. In this way we need to associate some,
necessarily approximate, characteristic velocities to the
main processes of liquid or vapor motion through the
porous medium. A comparison of these velocities will make
it possible to distinguish the dominant mechanisms at the
different stages of drying.

2 General expression for the drying rate

In the following the description of physical phenomena
within the porous medium must be understood as aver-
aged over a sample volume sufficiently large compared to
its heterogenities, i.e. an elementary representative vol-
ume (REV) [1]. In addition the sample is assumed to be
sufficiently wide for edge effects to be negligible. Thus the
physical phenomena are independent on the position in
any plane parallel to the free surface and, by symmetry,
the average (over an REV) motion of liquid or vapor is
parallel to the direction x perpendicular to this surface
(we take the origin x = 0 at the free surface and x > 0
out of the sample).

Basically the liquid escapes from the sample (in the
form of vapor) by going through its free surface as a re-
sult of evaporation. The drying rate (Vd) is defined as the
rate at which this vapor escapes from the sample by unit
surface:

Vd =
1
S

dM
dt
· (1)

Since within the sample this vapor is in the form of vapor
or liquid we have:

M = ρΩL + n̄Ωv. (2)

In this equation, ΩL and ΩV are respectively the liquid
and vapour volumes, ρ is the liquid density (considered
uniform and constant) and n̄ the mean vapor density de-
fined as:

n̄ =
1
ΩV

∫
ΩV

ndΩ (3)

where n is the local (over an REV) vapour density (the
mass of vapour by unit volume (n � ρ)). We can prove
that n̄ is almost constant for some regimes by anticipat-
ing on our further description of drying regimes. Indeed
for a regime in which the liquid is dispersed within all
the granular packing (evaporative and capillary regimes)
n remains equal to the saturation vapour density except
in a few layers close to the free surface. In addition it may
be shown that this is still true when a significant region
of the porous medium is dry (“receding regime”), using in
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particular the linear profile of vapour density within the
dry region, except when the saturation reaches values of
the order of n/ρ. Using now the conservation of the total
volume available for gas or liquid (ΩL +ΩV = Cst. = Ω0

whereΩ0 is the total volume available for liquid or vapour)
we finally obtain from (1) and (2):

Vd = − 1
S

(ρ− n̄)
dΩL

dt
≈ − 1

S
ρ

dΩL

dt
· (4)

Thus the drying rate is simply the rate at which the liquid
disappears from the sample. Moreover, using the satura-
tion φ, i.e. the ratio of the effective liquid volume to the
total volume available for liquid within the granular pack,
we have:

ΩL = ωS

∫ H0

0

φ(x)dx = Ω0φ̄ (5)

where ω is the porosity and φ̄ the mean saturation (over
the sample). Finally the drying rate is given by:

Vd = −M0

S

d(φ̄)
dt

(6)

where M0 is the initial mass of liquid in the saturated
material. This means that if in addition we can express
the drying rate as a function of boundary conditions and
material properties we shall obtain from (6) an equation
giving the saturation as a function of time. Our approach
in terms of regimes will effectively make it possible to ex-
press Vd as a function of boundary conditions and satura-
tion only.

Note that the pseudo steady-state hypothesis means
that during each elementary step of the drying process
the instantaneous drying rate can be computed by assum-
ing that the liquid and vapour distributions do not change
significantly during this step. More precisely this requires
that for an elementary measured variation ∆φ̄ the corre-
sponding variation in velocity must be much smaller than
the mean velocity during this period: ∆Vd � Vd.

3 Rate of evaporation

The rate of evaporation (Ve) from a liquid surface depends
on the diffusion of vapor through air whose rate is propor-
tional to the gradient of vapor density:

Ve = −Ddn
dx

(7)

where D is the coefficient of diffusion of the vapour in
the gas. Remark that n is proportional to the pressure
and inversely proportional to the temperature, while D is
proportional to the square root of the temperature. Two
asymptotic situations can now be considered. If the inter-
face is at a distance H much larger than the mean free
path (λ) of vapour molecules from a surface along which
the vapour density is fixed to a small value n0, and if
there is no gas flow between the two surfaces, the conser-
vation of vapour mass in steady state implies that dn/dx

is constant. Under these conditions we obtain the follow-
ing simple expression for the rate of evaporation:

Ve = D
(nv − n0)

H
=
K

H
(8)

where nv is the saturation vapour density and K a func-
tion of the temperature and pressure. When the interface
is in direct contact with a convection current the variation
of dn/dx with x depends on the gas velocity profile [17,
18]. Since gas flows are generally in a turbulent regime the
velocity significantly varies only over a short distance (the
boundary layer) from the interface. Within this frame-
work a rough approximation [19] consists in considering
that dn/dx is constant in a region of thickness δ of the or-
der of this boundary layer while the vapour density (n0)
is maintained constant in the region of nearly uniform ve-
locity. In that case we obtain the following estimate for
the rate of evaporation:

Ve = D
(nv − n0)

δ
=
K

δ
· (9)

Note that this approximation at least makes it possible
to reproduce the tendency of the rate of evaporation to
increase with gas velocity, since the boundary layer is a
decreasing function of velocity.

Let us now consider the evaporation from a porous
material. When the free surface of the sample is covered
by a liquid film exposed to the convection current the rate
of evaporation is given by (9). If only some wet patches are
exposed to the convection current (possibly perturbed by
the roughness (of the order of the size of particles) of the
free surface of the sample), the rate of evaporation is lower
but has in general the same order of magnitude except
when the surface fraction occupied by the wet patches
is too small (say below 0.1 according to the results of
Suzuki and Maeda [17]). The rate of evaporation under
these conditions will be referred to as Ve.

When the first liquid volumes are at a distance H (this
will be referred to as the liquid-limit) larger than few par-
ticle diameters from the free surface, evaporation now oc-
curs in the form of simple diffusion between −H and 0 and
diffusion through the convection current beyond 0. Re-
mark that at a relatively short distance below the liquid-
limit a liquid patch is surrounded by other small liquid
patches. The mass conservation for the vapour density in
pseudo steady-state (∇ · Ve = 0) under such boundary
conditions implies that n remains very close to nv in the
corresponding gas volume so that evaporation is negligible
from the corresponding patches. As a consequence only a
small layer of the porous material below the liquid-limit
will provide almost all the diffusing vapour. On the basis
of the results of Suzuki and Maeda for the evaporation
from the free surface of a porous medium we can con-
sider that the evaporation rate from this layer is given by
an equation similar to (8) with now a coefficient of dif-
fusion (D∗) depending on the surface fraction of patches,
i.e. on the saturation, and on the tortuosity of the porous
structure (θ). Since pressure and temperature only affect
the kinetic properties of the molecules while the liquid
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fraction and tortuosity are purely geometrical character-
istics it is natural to assume that, as long as the mean free
path of molecules remains much smaller than the charac-
teristic pore size, D∗ is simply obtained by multiplying D
by a factor f(θ, φ) < 1. Finally the rate of evaporation
in steady state is now given by (8) and (9) in which the
vapour density at the boundaries takes the following val-
ues: n(−H) = nv; n(0) = ni; n(δ) = n0. Eliminating ni

from these equations gives:

V ∗e =
f

1 + fδ/H

K

H
· (10)

As soon as H is much larger than δ we simply have
V ∗e = fK/H. In addition the continuity between the
two evaporating processes is ensured by the fact that
V ∗e (h)→ Ve when H → 0.

4 Capillary transfers

During slow drying liquid motions are fundamentally
caused by differences in capillary pressure between two
points of the liquid network. Since complex motions of
liquid within the granular packing are involved, in partic-
ular counterflows (see [4] and Sect. 5.1), it is rather hard
to precisely compute the characteristic velocity associated
to this phenomenon. Considering that it globally leads to
a liquid motion through the grain network towards the
sample free surface we suggest to estimate this velocity
by assuming that it is a liquid motion through the porous
network caused by a difference in capillary pressure be-
tween the top and the bottom of the sample.

Now the rate of liquid flow under the action of capillar-
ity depends on the liquid distribution within the granular
network but it is also a rather difficult problem to deter-
mine this distribution since it depends on the pore struc-
ture and on the interfacial tensions between the liquid and
the gas, the liquid and the solid, and the solid and the gas.
We shall neglect the effect of particle roughness, which at
least means that this roughness is much smaller than par-
ticle radius. Here we shall simply consider that, during
the drainage induced by drying, for a given value of sat-
uration, the liquid distribution in the granular packing is
given. Since this liquid distribution is entirely determined
by the particle configuration and by capillary effects which
vary proportionally to the pore size, it is a function of φ, ω
and R only. This means that the liquid network has a per-
meability (k) which depends on the same parameters. On
the basis of various theoretical and experimental results
we can write:

k = F (φ, ω)R2 (11)

where F is an increasing function of φ and a decreasing
function of ω. If we assume that this function can be writ-
ten in the form F = f0(ω)f1(φ) its value might for ex-
ample be estimated from the theoretical Koseny-Carman
formula for the permeability of the saturated medium

f0(ω) = (1 − ω)3/45ω2 and from the usual empirical ex-
pression [22] for the permeability of an unsaturated porous
medium: f1(φ) = (φ−φc)3/(1−φc)3 where φc is a critical
saturation below which the liquid network is discontinuous
(f1(φ < φc) = 0).

The motion of liquid through the solid network under
a gradient of pressure (p) is correctly described by the
Darcy’s law:

dp
dx

=
µV

k
(12)

where µ is the liquid viscosity and V the resulting mean
velocity. During drying, in the absence of gravity effects,
no pressure gradient is applied by external means to the
liquid network. Only some heterogeneity in capillary pres-
sure throughout the sample can cause a liquid motion.
There are various types of such heterogeneities and we
shall retain only one which corresponds to a critical situ-
ation. Consider a material in which the saturation is uni-
form. If the evaporation is extremely rapid the liquid-gas
interface retreats within the granular packing while the
saturation below this interface does not vary. During such
a phenomenon the liquid tends in particular to disappear
from around the points of contact between particles where
the thickness of the liquid films takes its minimum value.
Thus the mean curvature of the interface (in an REV) is
at its minimum and the capillary pressure is at its maxi-
mum (pc). Using now scaling arguments similar to those
used above for the liquid distribution under capillary ef-
fects only, we deduce:

pc =
α

R
(13)

where α is a function of the three interfacial tensions above
mentioned. The pressure (and thus the liquid velocity) at a
given distance from the liquid-limit satisfies a differential
equation obtained by introducing the expression for the
velocity from the Darcy’s law into the mass conservation.
In order to directly obtain an approximate expression for
the characteristic velocity resulting from this liquid dis-
tribution we shall simply assume that at the maximum
distance H0 from the liquid-limit and within the wet re-
gion the capillary pressure is equal to p(φ̄), i.e. the capil-
lary pressure resulting from the liquid distribution for the
mean saturation in equilibrium in the porous structure.
In addition we assume that the velocity can be deduced
with the help of the Darcy’s law in which a constant per-
meability k(φ̄) is used. The pressure gradient thus writes
(α/R−p(φ̄))/H0 and the corresponding critical liquid ve-
locity is given by:

Vc =
k(φ̄)
µH0

(α
R
− p(φ̄)

)
. (14)

In general p(φ̄) is much smaller than α/R so that we have:

Vc ≈
αF (φ̄)R
µH0

· (15)
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Obviously this value is a rough approximation of the liq-
uid velocity under capillary effects under the conditions
described in Section 5.1. Indeed we shall see that the ex-
act process is a progressive replacement of liquid by gas,
by fits and starts and even some significant rebalancing
over the sample but we emphasize that (15) probably con-
tains the basic, scaling dependency on the variables of the
problem.

At last note that the pressure loss by unit length due to
gravity is equal to ρg so that gravity is negligible compared
to capillary effects when:

ρgRH0

α
� 1 (16)

in which in most cases α = βσ where σ is the liquid-gas
interfacial tension and β a coefficient of the order of the
ratio of the particle radius to some characteristic size of
the pores (for usual systems β can reasonably be taken
to 5).

5 Drying regimes

5.1 The evaporative regime: Ve � Vc

As some liquid is withdrawn because of evaporation from
the top of the sample, the curvature of the liquid-gas in-
terface decreases so that the capillary pressure increases.
Ultimately it should even reach its critical value. How-
ever this does not occur in this regime since for a much
lower capillary pressure the characteristic liquid velocity
under the action of the corresponding pressure gradient
is as large as the evaporation rate. When this occurs the
flow of liquid towards the free surface of the sample bal-
ances the evaporation and the limit between the wet and
the dry region, which will now be referred to as the liquid-
limit, (almost) no longer moves towards the interior of the
porous medium.

In fact, in this regime, at each step of the process as
long as the liquid network is continuous, capillary effects
have time to balance, i.e. the (mean) curvature of the
gas-liquid interfaces is uniform in the sample. Due to the
evaporation along the free surface the liquid-gas interface
withdraws and reaches the first particle layer. Then, since
the liquid cannot withdraw from around the points of con-
tact between particles, fingers tend to penetrate the pack-
ing where the curvature is the largest. At this stage this is
nothing more than an invasion percolation process. How-
ever a peculiar effect can soon occur. If any gas finger
reaches a region where its curvature can be larger it sud-
denly invades this region while the liquid at the same time
more or less completely fills in the tail of this finger or of
other fingers. This effect can be better understood with
the help of an ideal porous model as proposed in Figure 2.
Subsequently the original gas-fingers form again, reach the
region of largest curvature which is now filled with gas and
the progression can go on under the same principles. This
effect is probably at the origin of the peculiar density pro-
files during drying of a bead packing made of two layers of

(a) (b)

(c) (d)

Fig. 2. Scheme of principle of the equilibration process within
the liquid network. We consider the evaporation of a liquid sit-
uated in a series of basins of various sizes connected by channels
of identical size. The basins are initially full of liquid (a) then
the largest basin along the liquid-gas interface is filled with
gas (b). Afterwards the next largest basin is filled up (c). The
peculiar effect occurs when the next largest basin being larger
than one of the basin just filled, the former is filled while the
latter is emptied (d).

beads of different diameters: the layer with the largest par-
ticles close to the bottom first empties almost completely
before the upper layer starts emptying [5,12,20,21]. As
already suggested by Shaw [4] this in fact means that this
process does not completely follow the rules of the invasion
percolation process. The fundamental difference is that in
drying the external pressure which conditions the advance
of the gas does not vary monotonously. As a consequence,
for a granular packing made of two layers as described
above, as soon as one of the fingers formed in the upper
layer has reached the bottom layer this layer is rapidly
invaded by gas while the upper region can be filled back.

Apart from the preliminary stage during which the
liquid-gas interface initially penetrate the whole medium
(see Sect. 1), the saturation in the evaporative regime re-
mains uniform except in a very small region close to the
free surface where it is almost equal to zero. As the satura-
tion decreases the shape of the liquid-gas interface along
the liquid-limit changes but the liquid-limit remains al-
most fixed. Finally the drying rate remains equal to the
evaporation rate Ve from the free surface of the sample,
modulated by the progressive, slight intrusion of the in-
terface inside the granular packing (cf. Fig. 3).

5.2 The capillary regime: Ve � Vc > V∗e

When the rate of evaporation is much larger than the crit-
ical capillary velocity the liquid does not have time to flow
and replace the evaporated liquid even along the liquid-
limit of minimum average curvature. A dry region would
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Fig. 3. Scheme of principles of the liquid distribution within
the granular packing in the three successive drying regimes
(cf. text).

thus tend to develop towards the interior of the sample.
However the new rate of evaporation (V ∗e ) from the new
liquid-limit now decreases as it advances and eventually
becomes equal to Vc at a distance d, in general much
smaller than H0, from the free surface. At this stage the
liquid-limit almost stabilizes. Afterwards the liquid-limit
slightly and slowly moves because of the decrease of Vc as
φ decreases within the wet region, so that d only slightly
varies during this capillary period. In conclusion, in this
regime the drying rate remains governed by the critical
capillary velocity Vc(φ̄) and the liquid-limit remains at a
short distance from the free surface (cf. Fig. 3).

5.3 The receding regime: V∗e � Vc

This regime is reached when the rate of evaporation
from the interior of the sample remains larger than the
rate of capillary re-equilibration even when the dry front

advances towards the interior. In that case the liquid does
not move but simply evaporates as soon as the dry front
reaches it and there is a receding dry front which finally
advances towards the interior of the sample (cf. Fig. 3).
In this regime the rate of drying is given by V ∗e , which de-
creases with H, the length of the dry region. If the mean
saturation is equal to φ0 in the wet region when this regime
starts we deduce from (10) the drying rate expression as
a function of φ̄:

Vd =
fK

H0

φ0

φ0 − φ̄
(17)

where H0 is the sample length.

5.4 Synthesis

The above expressions equated to (6) can be integrated to
obtain the drying rate as a function of time. Around the
transition between these asymptotic regimes some signif-
icant gradients of φ may develop which should be taken
into account when estimating the drying rate. We shall
nevertheless assume that the transitions are sufficiently
abrupt for the dominant phenomenon to suddenly switch
over at the expected critical value of φ, i.e. we assume
that three regimes respectively take place for Ve < Vc,
Ve > Vc > V ∗e and V ∗e > Vc. The possible evolutions
of Vd as a function of capillary and evaporation veloci-
ties can thus be drawn on a single diagram (cf. Fig. 4).
The schematic aspect of the corresponding concentration
profiles at the different stages of drying can be drawn (cf.
Fig. 5) and, from a qualitative point of view, appear in rea-
sonable agreement with those reported in literature [16] so
far as granular packings are concerned.

6 Experiments

6.1 Experimental procedure

We carried out experiments of drying of bead packings
filled with ethanol. Four ranges of bead diameters were
used which were centered within 15% around a mean
value of either 4.5, 17, 34 or 116 µm. Pure ethanol (ρ =
785 kg m−3, µ = 1.2 × 10−3 Pa s, σ = 0.023 Pa m) was
mixed in a container with a certain amount of beads un-
til obtaining a saturated viscous paste. Then this paste
was poured in a cylindrical vessel (diameter: 2 cm; depth:
1.5 cm), possibly vibrating the container when it was too
viscous, until filling the vessel. The latter was left for set-
tling for a varying time (depending on initial concentra-
tion and particle radius) then it was vibrated during 2 min
in order to approach the maximum, volumic, solid fraction
of a disordered packing. The solid fraction reached after
this procedure was 63.5%±1% except for the smallest par-
ticles (4.5 µm) for which it was 50% probably because of
some residual, colloidal effects at short distances. A short
time after the preparation, as soon as the liquid-air in-
terface at the top of the sample almost reached the first
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Fig. 4. Conceptual diagram of drying regimes and correspond-
ing evolutions of Vd as a function of φ̄. The evolution of Vd de-
pends on the relative values of the characteristic rates of evap-
oration and capillary flows. In theory our approach is strictly
valid only for asymptotic cases (see text). In practice, around
the transition between these asymptotic regimes some signif-
icant gradient of φ may develop which should be taken into
account when estimating the drying rate. We nevertheless as-
sume that the transitions are sufficiently abrupt for the dom-
inant phenomenon to suddenly switch over at the expected
critical value of φ̄. The transition from the capillary regime to
the receding regime occurs from a point where the V ∗e curve
starting from Ve at a saturation φ0 such that it intersects the
Vc curve in this point is in fact tangential to this capillary
curve. The value of the distance between the liquid-limit and
the free surface at a given point (corresponding to a mean satu-
ration φ̄1) during the capillary regime can be determined from
the value of the saturation φ0 at which the V ∗e curve inter-
secting the capillary curve in this point starts. Indeed in that
case we have d = H0(1− φ̄1/φ0). When the level of the drying
curve in the CR period is not sufficiently high it meets the
capillary curve in a region where the latter rapidly decreases
(because it tends towards zero when the saturation tends to
the critical saturation). In that case the first V ∗e curve starting
at this point remains larger than the Vc curve so that a reced-
ing regime directly develops without any period of capillary
regime.

Fig. 5. Schematic representation of the liquid distribution at
different stages (time unit t0) during the drying of a granular
packing. In the first (evaporative) regime the density profile
is linear and horizontal and advances at an almost constant
rate. In the second regime a slight decrease in density appears
close to the free surface of the sample and the profile advances
at a lower rate. In the last (receding) regime only the part of
the profile corresponding to a zero density (close to the free
surface) now increases.

bead layer, the vessel was set up on scales and the free sur-
face of the sample submitted to an air current at a given
velocity. Four different velocities (νi with i ∈ [1,4]) (not
measured precisely) were obtained from a fan positioned
at different distances or even switched off. The ambient
temperature was maintained at 23 ◦C. The sample weight
was recorded with a computer at different time intervals
(from 1 to 5 min. depending on material and current ve-
locity).

A typical result (sample weight vs. time) is shown in
Figure 6. This type of curve does not give precise infor-
mation concerning the evolution of drying rate with time.
The data were first treated in order to obtain the satura-
tion as a function of time. At this stage the drying rate
can be obtained by computing the time-derivative of the
saturation. In this aim we divided the saturation differ-
ence between two instants by the corresponding, elapsed
time. In order to limitate the perturbations on velocity
resulting from weight fluctuations (due to air current) or
possibly from some counterflows effects (cf. Sect. 5.1), we
used only time intervals corresponding to a saturation dif-
ference of 0.1. A mean curve was then fitted manually
through the corresponding data and a set of representa-
tive points was determined. The uncertainty on the results
as presented here is about 25%. The reproducibility of the
results presented here within the experimental uncertainty
was proved by repeating the tests.

6.2 Results

The results in terms of dφ̄/dt vs. φ̄ corresponding to the
maximum velocity (ν1) are presented in Figure 7. In op-
position with all existing data we used a representation in
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velocity: ν1).
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Fig. 7. Drying curves of packings of beads of different diame-
ters (current velocity: ν1) filled with ethanol.

logarithmic scale in order to observe more clearly the ul-
timate stages of drying. These data along with other data
corresponding to the three smaller current velocities are
plot in a diagram (1/2R)(dφ̄/dt) vs. φ̄ in Figure 8.

7 Comparison with theory

In these experiments gravity effects remained negligible.
Indeed for the largest particles we have ρgRH0/α = 1/10.
From Figure 7 we can see that the current velocity governs
the initial evaporation rate within the uncertainty of the
measurements. However the evaporation rate keeps this
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Fig. 8. Drying of bead packings filled with ethanol: drying
rate to particle diameter ratio as a function of saturation for
the different samples and different current velocities.

level a larger time for larger particles. The situation is
critical for the smallest particles for which the evaporation
rate decreases immediately after the beginning of the test.
During this first period, which clearly corresponds to the
CR period as described in literature, the drying rate is in
fact not exactly constant but slowly decreases, as already
remarked by Van Brakel [12]. It is remarkable that during
this period the drying rate does not depend on particle
radius: as predicted by the theory this means that the
drying rate is not governed by the liquid flow in the porous
medium.

From Figure 7 it also appears that the drying rate in
the ultimate stage of drying does not depend on parti-
cle radius and tends towards an asymptotic value. This
is in agreement with the theory corresponding to the re-
ceding regime which predicts that the drying rate simply
decreases with the distance of the liquid-limit from the
free surface of the sample independently of particle radius
and tends towards fK/H0.

At last in the drying curves of Figure 7 there is an in-
termediate period during which the drying rate decreases
and is all the lower for smaller particle radius. This in-
dicates that this period should more or less correspond
to the capillary regime. The validity of this suggestion ap-
pears even more clearly when the drying rate is divided by
the particle diameter. In that case the theory predicts that
the initial and final values of (1/2R)(dφ/dt) respectively
in the evaporative and receding regimes depend on particle
diameter and current velocity, but its intermediate value
in the capillary regime should not depend on these param-
eters. This is exactly what appears in Figure 8. After the
(almost) constant rate period, if their initial level is suffi-
ciently high, the curves seem to meet a decreasing master
(capillary) curve which they then follow. As the saturation
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Fig. 9. Drying curve of an ethanol-filled bead packing (di-
ameter: 116 µm, current velocity: ν1) for two different initial
porosities.

decreases they eventually leave this capillary curve and fol-
low a curve which is tangential to it and tends to the final
rate of drying. The second stage obviously corresponds to
the capillary regime while the third stage is the receding
regime. The shape of the curves in the receding regime
is very close to that predicted by the theory but consid-
ering the rough approximations made in this theory we
cannot expect a perfect agreement. When the initial level
of the CR period is not high enough the drying curve does
not follow the capillary curve when it meets it but simply
slowly decreases towards the asymptotic value. This corre-
sponds to the second theoretical situation as represented
in Figure 4 for which the receding regime directly follows
the evaporative regime because Vc < V ∗e .

Note that in Figure 8 the curve corresponding to the
smallest particle diameter was in fact slightly higher in
the diagram. Its seemed reasonable to associate this effect
with the difference in solid fraction between this sample
and those made with larger particles. In order to test this
idea we compared the results obtained with two differ-
ent preparations with the same particle type (sedimenta-
tion then vibration during five minutes, and sedimentation
only) leading to two different solid fractions (cf. Fig. 9).
The two corresponding drying curves are identical (within
the experimental uncertainty) in the initial and last peri-
ods but clearly differ in the intermediate period. Following
our theoretical analysis this period likely corresponds to
the capillary regime during which the drying rate is gov-
erned by liquid flow through the solid network. This result
in fact appears as a confirmation of the theory since for a
given capillary pressure the liquid velocity is more or less
proportional to the square of the pore size. On the basis
of these results and since it is hard to associate a pore size
value to a given solid fraction, in Figure 8 we have simply
translated the real curve (4.5 µm, ν1) of such an amount
that it could be superimposed onto the other curves
over a wide range of saturation (corresponding to the
capillary regime). This translation in fact consists in con-

sidering that the effective mean diameter of these beads
was 12.5 µm.

8 Conclusion

A quantitative comparison of the theory with existing
data cannot be carried out because of the small number
of complete drying curves. However this scaling approach
already makes it possible to predict and understand the
physical origins of the currently observed stages of drying
and the corresponding rates of drying. In particular we
clearly showed that the FDR period results from a balance
between evaporation and capillary liquid flow through a
partially desaturated material and is governed by the lat-
ter effect. Moreover the CR period is all the shorter for
smaller particles and higher intensity of surface convec-
tion, and the form of the drying rate curves in the capil-
lary regime is close to that predicted in the three regimes.
We suggest that, with some refinements, our approach can
be extended to any type of porous materials. This would
in particular make it possible to roughly predict the dry-
ing rate evolutions without numerical model. In this aim
it would be sufficient to determine the “capillary curve”
of the material. Thus this might constitute a more suc-
cessful approach than the “characteristic drying curve”
approach [23]. However more experiments and theory are
needed in order to take into account gravity effects, to un-
derstand the effects of wetting and to describe more pre-
cisely the evolution of the saturation distribution within
the material.
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